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Stokes flow through periodic orifices in a channel 
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This paper develops a three-dimensional infinite series solution for the Stokes flow 
through a parallel walled channel which is obstructed by a thin planar barrier with 
periodically spaced rectangular orifices of arbitrary aspect ratio B’/d’ and spacing D’. 
Here B’ is the half-height of the channel and d‘ is the half-width of the orifice. The 
problem is motivated by recent electron microscopic studies of the intercellular channel 
between vascular endothelial cells which show a thin junction strand barrier with 
discontinuities or breaks whose spacing and width vary with the tissue. The solution 
for this flow is constructed as a superposition of Hasimoto’s (1958) general solution for 
the two-dimensional flow through a periodic slit array in an infinite plane wall and a 
new three-dimensional solution which corrects for the top and bottom boundaries. In 
contrast to the well-known solutions of Sampson (1891) and Hasimoto (1958) for the 
flow through zero-thickness orifices of circular or elliptic cross-section or periodic slits 
in an infinite plane wall, which exhibit characteristic viscous velocity profiles, the 
present bounded solutions undergo a fascinating change in behaviour as the aspect 
ratio B / d ’  of the orifice opening is increased. For B / d ’  4 1 and (D’-d’)/B’ of 0(1) 
or greater, which represents a narrow channel, the velocity has a minimum at the orifice 
centreline, rises sharply near the orifice edges and then experiences a boundary-layer- 
like correction over a thickness of O(B’) to satisfy no-slip conditions. For B / d ’  of O( 1) 
the profiles are similar to those in a rectangular duct with a maximum on the centreline, 
whereas for B / d ’  9 1, which describes widely separated channel walls, the solution 
approaches Hasimoto’s solution for the periodic infinite-slit array. In the limit 
(D’ - d’)/B’ 4 1, where the width of the intervening barriers is small compared with the 
channel height, the solutions exhibit the same behaviour as Lee & Fung’s (1969) 
solution for the flow past a single cylinder. The drag on the zero-thickness barriers in 
this case is nearly the same as for the cylinder for all aspect ratios. 

i 

1. Introduction 
The problem of viscous flow past a single obstacle in a closely spaced parallel-walled 

channel first attracted widespread attention nearly 100 years ago. In 1898, Hele-Shaw 
discovered that the streamlines for flow past a circular cylindrical post confined 
between two closely spaced parallel flat plates accurately reproduced the lines of force 
around a metal cylinder in a magnetic field. This phenomenon was then explained by 
Stokes, who mathematically proved that if the spacing between the walls 2B’ was 
sufficiently small compared to the diameter 2a of the cylinder, the vertical component 
of the velocity could be neglected and the governing equation for the viscous flow in 
planes parallel to the boundaries became a potential flow equation. However, as a 
potential flow cannot satisfy the no-slip condition on the surface of the cylinder, the 
analysis is incomplete and becomes invalid in the region near the boundary of the 

f Author to whom correspondence should be addressed. 
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FIGURE 1. Flow geometry showing (a) frontal view of a barrier in the plane x = 0 and 
(b) side view of a barrier in an infinite channel in the plane y = 0. 

cylinder. Using singular perturbation theory, Thompson (1968) showed that for 
B’/a 4 1 and a of O( 1) there was a thin layer near the cylinder of thickness O(B’) where 
the vertical velocity did not vanish and the viscous terms could not be neglected owing 
to the requirement of the no-slip boundary conditions. Important advances in the 
analysis of this problem were then made by Lee & Fung (1969) who obtained the 
Stokes solution for three-dimensional flow past a single circular cylinder in studying 
the flow of blood around a septa1 post in pulmonary alveoli where the aspect ratio of 
the post B’/a was typically O(1). This solution was then extended by Lee (1969) to a 
doubly periodic array of cylinders using a two-term approximation that provided 
reasonable numerical results provided B’/a < O( 1) and the cylinder spacing D‘/a 9 1. 
This same problem has recently been re-examined by Tsay & Weinbaum (1991) who 
were interested in the flow through perpendicular fibre arrays in a channel as a model 
for filtration flow in capillary interendothelial clefts (Tsay, Weinbaum & Pfeffer 1989). 
To achieve this objective these investigators developed a truncated infinite series 
solution that extended Lee & Fung’s analysis to periodic cylinders of arbitrary aspect 
ratio and spacing. This new class of solutions successfully described the transition in 
behaviour from the Hele-Shaw potential flow limit (aspect ratio B’/a 4 1) to the 
viscous two-dimensional limit, B’/u 9 1 (Sangani & Acrivos 1982) for the hydro- 
dynamic interaction between the fibres. These previous solutions for the flow past a 
single circular cylinder of Lee & Fung (1969), or a doubly periodic array of cylinders 
(Tsay & Weinbaum 1991), have been derived by truncating a general series solution 
which satisfies the governing equations and no-slip boundary conditions on the walls 
associated with both the channel boundaries and the cylinders. 

In the present study, we shall investigate the orifice flow through a planar periodic 
array of barriers of width 2(0’-d’) and height 3B’ between two parallel walls, as 
shown in figure 1. We develop a new general solution which is a superposition of 
Hasimoto’s (1958) classical solution for Stokes flow through a periodic infinite-slit 
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array in an unbounded plane wall and a new three-dimensional infinite series solution 
which corrects for the top and bottom boundaries. In particular, the new general 
solution satisfies the governing equations and all boundary conditions except the zero 
normal velocity component on the barriers and a zero pressure symmetry condition at 
orifice openings. The latter condition is then satisfied by truncating a single infinite 
series of remaining unknown coefficients. This new solution converges rapidly for 
orifices of all aspect ratios, from B = B’/d’ < 1 to B 9 1, provided D = D’/d‘ is less 
than approximately 5 .  In the limit B 6 1 and (D- 1) - 0(1), the flow can be simply 
approximated by a Hele-Shaw potential flow equation, and solved exactly by 
conformal mapping methods. This solution is singular near the edges of the orifice, and 
in contrast to the classical solution of Sampson (1891) for viscous flow through a 
circular orifice in a plane wall has a minimum velocity at the centreline. Three- 
dimensional corrections are required in a region of O(B’) near the edges to satisfy 
viscous flow boundary conditions. When B - O(1) the solution of the full Stokes 
equations exhibits three-dimensional behaviour throughout the region of the orifice. 
The limiting case B 9 1 corresponds to the exact two-dimensional solution given by 
Hasimoto (1958) for the flow through an infinite plate with periodic slits. We believe 
that the new solutions given herein are of fundamental interest to fluid mechanicians 
because they described the transition in behaviour from the irrotational Hele-Shaw 
potential flow limit to Hasimoto’s two-dimensional limiting behaviour as B increases 
from B 4 1 to B S 1. In addition, when (D- 1) 4 1, one approaches the limiting 
behaviour examined by Lee & Fung (1969) for the flow past an isolated cylinder of 
arbitrary aspect ratio. 

The motivation for the present study derives from a recent paper by Weinbaum, 
Tsay & Curry (1992) in which a three-dimensional theoretical model is proposed for 
the ultrastructure of the clefts (channel) between adjacent endothelial cells. This model 
is based on the electron microscopic studies of Bundgaard (1984) and Adamson & 
Michel (1 993) for the three-dimensional organization of the junction strand barrier 
which modulates the flow of water and solutes across the cleft. In contrast to an earlier 
model proposed in Tsay et al. (1989), where the pores in the junction strand were 
viewed as circular holes of 5 - 6 nm radius, the new model in Weinbaum et al. (1992) 
predicts that the most likely pore is a 40 - 200 nm wide break in the junction strand 
whose height, 2B’ - 20 nm, is the spacing between the plasmalemma boundaries of the 
cleft. This prediction has just been confirmed by the three-dimensional serial section 
electron microscopic reconstructions of frog mesentery capillaries reported in Adamson 
& Michel (1993). For these dimensions 0.1 < B < 0.5, and it is necessary to develop a 
model that considers an orifice that spans the behaviour from the Hele-Shaw limit 
B Q 1 to B - O(1). 

This paper is presented in six sections. Section 2 describes the new three-dimen- 
sional solutions of the Stokes creeping flow equations for the flow geometry shown 
in figure 1. The conforming mapping solution for the Hele-Shaw limit is presented in 
$3. In $4 the principal results are shown and the Stokes solutions are compared with 
the various asymptotic solutions described in this introduction. Finally, a brief 
discussion of biological application and the conclusions are given in $95 and 6. 
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2. Three-dimensional Stokes solution for flow through a periodic orifice in 
a channel 

2.1. Governing equations and boundary conditions 
The dimensionless governing equations and boundary conditions for the incom- 
pressible Stokes flow shown in figure 1 can be written as follows: 

and 

V * u  = 0, (1) 
v2v = v p ,  (2) 

u - i( l  - z 2 / B 2 )  as x+ 00, ( 3  4 
v = O  at z = f B ,  (3  b) 

v , = O  at y = + D ,  ( 3  4 
v, = v, = 0 at x = 0, 

v, = 0 at x = 0, 1 < 1,111 < D ,  
p = 0  at x=0, O d l y l d l .  

The dimensionless quantities are defined as 
x = x’/d’, D = D’/d’, B = B / d ’ ,  u = v’ / (Q/D’B),  p = p’/(,uQ/d’D’B), 

where Q is the flow in the periodic unit, - D < y < D, and p is the viscosity of the fluid. 
To solve the flow problem defined by (lF(3), we shall first find a general solution 

which satisfies all the boundary conditions except (3e)  and ( 3 f )  and then apply these 
two remaining boundary conditions to determine the unknown constants in a 
truncated infinite series that accurately approximates the exact solution for most cases 
of interest. 

2.2. General solution 
Hasimoto (1958) proposed a set of general solutions for the Stokes equations, which 
is the most appropriate form to describe flow past an infinite plane with an arbitrary 
arrangement of holes or slits. However, this general solution u, does not satisfy the 
boundary condition on the walls at z = & B. Therefore, a new three-dimensional 
solution must be constructed which has the flexibility to cause all three velocity 
components to vanish and also satisfy conditions (3a,  c, d) .  This superposition is given 

u = u m + v , + v ,  
by 

where v, is the Poiseuille flow at infinity. 

Hasimoto (1958) as 
The general solution of Stokes equation that satisfies v, = 0, = 0 at x = 0 is given in 

u, = iq5-xVq5, p ,  = -2a$/ax, (4a, b)  

where r j  satisfies Aq5 = 0. (5 )  
A separable solution for q5 that satisfies v, = v, = 0 at z = f B and vy = 0 at y = f D 

is 
mxY 

D 

m w  
q5 = C C Anme-YnmXcos-cosknz, 

n=o m=o 

where k, = (2n + 1) x/(2B) and y i m  = k i  + (mx/D)’. The general solution for u, and p ,  
can be expressed in the following form: 

(6 4 mxY m m  

vhz = C C Anm( 1 + ~ ~ ~ 1 x 1 )  e-Ymmlzlcos -cos k, z ,  
n=o m=o D 



Stokes flow through periodic orifices in a channel 21 1 

mn mnY m m  
vhy = C C A,, - x e-YnmlxI sin - cos kn z ,  

n=O m=O D D 

m.ny 
D 

a : m  
vhe = C C A,, k ,  x e-Ynmlzl cos __sin k ,  z ,  

n=o m=o 

mnY 1x1 
n=O m=O D X 

m a :  
p h  = C C 2Anm ynm e-YnmIx1 cos __ cos k, z - . 

This general solution with correct symmetries of geometry about x = 0 still needs to 
satisfy no-slip boundary conditions for v, on the walls, the zero normal velocity at the 
barriers, x = 0, as well as the zero pressure condition (3f). 

We next consider a second solution to Stokes equation that satisfies v, = v y  = 0 at 
z = f B. Following the general approach in Lee & Fung (1969), we assume a solution 
in the form 

(7 a-c) 

When (7a-c) are substituted into the continuity equation, one obtains the following 
kinematic constraint : 

If one now also substitutes (7a-c) into the Stokes equation and employs (8), one finds 
that for the pressure to be compatible in all directions 

d4q d2q 
dz4 dz2 - - 2 2 -  + a4q(z) = 0. (9) 

The solution of (8) that satisfies the boundary condition v y  = 0 at y = f D as well as 
v y  = vz = 0 at x = 0 is 

mxY $ =  C Bmsinwxcos-- 
m=o D '  

m 

where w2 = a2-(rnx/D)2.  
The solution of (9) that satisfies the boundary conditions v, = v y  = 0 at z = i B is 

(1 1) 
sinh az sinh az z cosh az + '(') = acoshaB a2BsinhaB-aBsinhaB' 

Finally, combining (7), (10) and (1 1) we obain another general solution of the Stokes 
equations : 

dq m 
v,, = m=O 2 cosy/:-$wBm(oJ)coswx-dw, dz 

m=o 

00 

v,, = c o s y  /: Bm(w) (q(z) sin wx) dw, 
m=o 

2 cosh az 
aB sinh a B  

m 

dw. p ,  = - c cos- mz lom ~ , (w)  sin wx 
m-0 
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It is important to observe that solution v, possesses appropriate symmetry properties 
at x = 0. We should mention that if the negative sign is chosen instead of the positive 
one on the right-hand sides of (7a) and (7b), a similar analysis to that shown above 
would have led to Lee & Fung's solution, equations (8) and (10) in their paper, which 
does not have the desired symmetry properties at x = 0. 

The no-slip boundary conditions on the walls have been satisfied by the general 
solutions (6) and (12) except for 0, = 0. The later condition provides an analytical 
relationship between A,, and B,(w), 

30 

A , ,  k ,  x e-Ynml"l sin k ,  + Bm(w) (q(B) sin wx)  du = 0. (13) 
n=O 

Taking the inverse Fourier transform of (13), we obtain 

2ynm wa2B/(yim + d)' 
(1 + aB(tanh aB-coth aB)) ' 

Z = loQ x e-Ynm " sin wx dx = where n m 

Combining (6), (12) and (14), the general solution can be written as 

1 2 C O O 3  

vy = n=o m=o c Xe-Ynm151cosknz+(-1)RGknI~L(x,z)  , (15b) 

x 
C D Q  

0, = c c 
n=o m=o 

where 

IfA(x, z )  = Znm(w) (q(z) sin w x )  do, (Io" 
2 cosh az I:A(x, z )  = Inm(w) sin wx dw. I: aBsinh a B  

The newly derived general solution (1 5 u-d) satisfies the governing equations and all 
boundary conditions except the mixed boundary condition 0, = 0 at x = 0 , l  < lyl < D 
a n d p = O a t x = O , l y ( < l .  

Note that the velocity expression at x = 0 in the general solution (15a) has no 
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orthogonality about z, but the pressure expression ( 1  5 d )  does. We, therefore, expand 
the pressure on the barrier 1 6 IyI 6 D as 

x x  
pw = C C 2Cnm sin ,8,( y - 1) cos k,  z,  

n=o m=o 

where P, = (2m+ 1)x /[2(D-  l ) ] ,  so that the pressure is continuous at the edge of the 
barrier, since p ,  = 0 at y = 1, and satisfies the periodicity in the y-direction. From 
( 3 f )  and (15d) ,  we can write 

Applying the orthogonality of Fourier's series, we obtain 

where 2 / D  if m+O 
1/D if m = 0 ,  

mxY D 
&.m = 1 sinPi(y- 1)cos-dy 

1 D 
Pi mn \ pj" - (mn/D)' 'OS 7 

mn if Pi =I= - D 

D - 1 .  m x  D mn . mn sin-++cos- if p.=- 
D 4mn D ? D  

The only remaining boundary condition to be satisfied is v, = 0 in 1 < IyI 6 D at 
x = 0. From (15a) and (17), this condition requires 

kXY 2( - l ) i  m c c  

n=O C m=O C. 
5&,cosT(cosklz--- x 

k=O Y i k  

Equation (18) is now multiplied by cos k ,  z and sin Pm(y - d )  and then integrated over 
the intervals - 1 < z < 1 and 1 < y < D. This leads to a linear matrix of equations for 
the only remaining set of unknown coefficients, the C,: 

where 

B 

eink = 2 1 Ili)(O, z) cos k ,  z dz 
0 

w2ak coth ak B 
dw, = 8(- 'Inkn Y i k  1: (w2 + y:k)2(w2 + y;,)'[l+ ak B(tanh ak B- coth ak B)] 

yik = [k: + ( k ~ / D ) ~ ] i ,  
a: = w' + (kz/D) ' .  

The double series in (19) is now truncated and solved by standard matrix reduction 
schemes. The convergence of this solution is examined in 54.1. 
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2.3. The resistance to thepow 
The total resistance to the flow consists of two parts: the shear stress applied by the 
walls ell and the force applied by the barrier 4. 

Because of the 
symmetry about y 
region 0 d z 6 B, 

antisymmetric nature of pressure field, equation (1 5 d), and its 
= z = 0, the drag acting on the barrier is eight times the force in the 
1 6 y d D :  

where 7,. = -p+2av,/ax. In view of the no-slip boundary condition on the barrier 
and the continuity equation, 7,, = -pw. 

The drag force acting on the barrier can be described by a dimensionless coefficient : 

From (15a) and (17), the frictional resistance on the two walls, from the upstream 
position x' = - L' to its downstream image plane x' = L', within the periodic unit 
- D' d y' d D' can be expressed as 

Inn(@) sin W L  
liBsinhwBcoshwBdw)]' 

where 7,. = av,/az. Two terms lie within the square brackets on the right-hand side of 
(22). The first term represents the resistance due to the undisturbed Poiseuille flow. 
Therefore, one concludes that the friction force on the walls due to the disturbance 
produced by the barrier is due to the second term involving the double summation. The 
integral in the second term tends to zero as L tends to infinity according to the 
Riemann-Lebesque lemma (see Zauderer 1989). If we now let L tend to infinity in the 
double summation and compare the resulting force contribution for F,, we find it is 
identical to the drag applied on the barrier, equation (20). The total additional 
frictional force on the walls at z = k B due to the presence of the barrier is thus the 
same as the result given by (20). 

3. An exact solution for Hele-Shaw flow 
We now consider a simpler model for the limit B 4 1. We assume that the flow 

moves as parallel sheets in the (x, y)-plane and neglect regions of O(B') near the barrier. 
In this exterior flow region, the Hele-Shaw potential flow equation applies. The 
dimensionless governing equations and boundary conditions are 

u = -fB2Vp(l -z2/B2), (23) 
Vp = 0, (24) 
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kplane 'I. 
[-plane 

C, -1 L A ,  &, 

FIGURE 2. Sketch of two-dimensional Hele-Shaw potential flow showing the transformation from 
the A-plane to the 5-plane for the asymptotic case B 6 I .  

As shown in figure 2, the physical A-plane can be mapped into the <-plane using a 
Schwartz-Christofel conformal transformation : 

Equation (26) transforms the flow in the infinite strip 0 6 y 6 D in the physical plane 
into the upper half-plane of the <-plane with a line source at the origin. The 
corresponding inverse transformation is : 

< = +[ - b - (b2 - 4g);], (27) 

where b = b(h) = $[(l - ~ J 2 c 0 ~ h ( ~ h / D ) + ( 1  +C3)'], 

1 + sin 7c/2D 
(1 - sin 7c/2D) ' 

< = -  

The complex potential in the <-plane is 

2 0  
W=--ln<+C. 7tB2 
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Therefore the stream function is 
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and the pressure is 

2 0  
nB2 

Y = --[Im(ln~)-n] 

2 0  
KB2 

p = -[Re (In c) - In (- c3)]. 

The complex velocity is given by 

From (23)  and (30) the x and y velocity components are 

vz=-E(l-$)Re(%, 2 v y = ~ ( l - $ ) I m ( ~ .  (31a,b) 

The drag force acting on the barrier for the Hele-Shaw potential flow is obtained by 
integrating (29) over the surface : 

The corresponding dimensionless friction coefficient is 

- -4pQID’ = lrB2 z[[Re(ln(Q-ln(-&)ldg. 

We should mention that the term c?v,.ax in the normal stress, 7,, = - p  + 2 av,/ax, 
acting on the barrier at x = 0 has been neglected because the Hele-Shaw approximation 
violates the no-slip boundary condition on the uy component of the velocity at the 
barrier. The normal force is approximated by the pressure field outside the viscous 
correction layer as in boundary-layer theory. 

4. Results 
In this section, we will discuss the convergence of the solutions, present representative 

solutions for the velocity profiles, compare these results with asymptotic solutions and 
plot the numerical results for the drag coefficient f b .  

4.1. Convergence of the solutions 
The only boundary condition that needs to be satisfied numerically is condition (3e) for 
the normal velocity component at the barrier. Our criterion for convergence is that )u,) 
does not exceed a prescribed error tolerance at selected points on the barrier. The 
unknown coefficients C,, in (19) are functions of B and D. 

The convergence of the truncated matrix solution as M and N are increased for 
B = 0.1, 1 and 10 and D = 2 are shown in table 1. Values of v, at two points on the 
barrier, p1 and p z ,  with the coordinates (0, f(D + l), fB)  and (0, f(D + l), 0)  are listed in 
this table. For B = 1 there is faster convergence along the diagonal than for B = 0.1 



M Point 

20 P1 

50 P1 

100 P1 

20 P1 

50 P1 

100 P1 

20 P1 

50 P1 

100 P1 

P2 

PZ 

PZ 

Pa 

P2 

PZ 

PZ 

PZ 

PZ 
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N = 4  

0.0591 
0.01 67 

- 0.0477 
-0.0559 

0.01 58 
- 0.0369 

0.0 152 

0.0013 
- 0.0 185 

0.0051 
-0.0139 

- 0.001 5 

0.0228 

0.1190 

0.0148 

-0.0436 

- 0.0560 

-0.0532 

N = 6  N =  10 
(a) B = 0.1 

0.0443 0.0476 
0.0369 0.0494 

-0.0162 -0.0129 
-0.0358 -0.0230 

0.0003 - 
-0.0165 - 

(b) B = 1 
0.0098 0.0107 
0.0057 0.0100 

-0.0042 -0.0032 
-0.0110 -0.0066 
-0.0004 - 

- 0.0066 - 

(c) B = 10 
0.0033 0.0077 

-0.0186 -0.0032 
-0.0074 -0.0032 
-0.0318 -0.0148 
-0.0050 
-0.0274 - 

- 

N =  12 

0.0497 
0.0524 

-0.01 12 
-0.0204 
- 
- 

0.01 16 
0.01 13 

-0.0023 
-0.0054 
- 

- 

0.0098 
0.0006 

-0.0008 
-0.01 10 
- 
- 

N =  14 

0.0482 
0.0537 
- 

- 

- 

- 

0.01 10 
0.01 14 
- 

- 

- 

- 

0.0080 
0.0031 
- 

- 
- 

- 

N =  16 

0.0493 
0.0553 
- 

- 

- 

- 

0.0113 
0.0120 
- 
- 

- 

- 

0.0091 
0.0044 
- 

- 

- 

- 

TABLE I. Convergence tests for v, = 0 at points p1 and p2 on the barrier for D = 2 

M 

20 
30 
40 
50 

100 

20 
30 
40 
50 

100 

20 
30 
40 
50 

100 

N = 4  N = 6  N = 8  N = l O  N =  12 N = 1 4  
(a) B = 0.1 

428.8 438.0 442.8 445.6 447.6 448.8 
433.6 442.8 447.6 450.4 452.0 453.6 
436.0 445.2 450.0 452.8 454.8 456.0 
437.2 446.8 451.6 454.4 456.4 - 

440.4 449.6 - - - - 

(b) B = I 
19.45 19.70 19.84 19.93 19.99 20.03 
19.68 19.94 20.08 20.17 20.22 20.27 
19.80 20.06 20.20 20.29 20.35 20.39 
19.87 20.13 20.35 20.36 20.42 - 

20.02 20.28 - - - 

(c) B = 10 
11.55 11.71 11.78 11.83 1 1.86 11.88 
11.67 11.86 11.94 11.98 12.02 12.04 
11.76 11.93 12.02 12.06 12.09 12.11 
11.80 11.98 12.06 12.11 12.14 - 

11.90 12.07 - - 

- 

- - 

TABLE 2. Convergence tests for friction factor f ,  for D = 2 

N =  16 

450.0 
454.4 
- 
- 
- 

20.06 
20.30 
- 
- 
- 

11.90 
12.05 
- 

- 
- 

or 10. Thus, for B = O(1) the truncation order is important in both Nand M .  However, 
table 1 (a) and table 1 (c) illustrate that more efficient convergence is achieved by letting 
M increase for B + 1 and letting N increase for B + 1. Typically, the errors for the 
three cases do not exceed 1 % when N 2 12 and M 2 50. When D + 1, the convergence 
is rather slow. For instance, when D = 10 (results not shown to save space) the error 
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0 0.25 0.50 0.75 1 .oo 
Y 

FIGURE 3(a,b). For caption see facing page. 

in u, is about 10 YO for N = 12 and M = 50. In this case, the length of the barrier is 
much greater than the width of orifice, and there is almost no interaction between 
orifices. This type of flow could be more conveniently described by a model for the flow 
past an infinite plate with a single slit between two parallel walls. The present solution 
provides accurate results for all values of B provided D < 5. 

Table 2 shows the convergence for the friction factor f,. Convergence to three 
significant figures is shown for all three values of B. The convergence of the solution 
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- 

- Hasimoto 
0.75 - 

- 
- 
- 
- 

0 0.25 0.50 0.75 I .oo 
Y 

FIGURE 3 .  Velocity profiles at the orifice opening, x = 0, in the midplane, z = 0, for D = 2: (a) 
B = 0.02, (b)  B = 0.1, ( c )  B = 1 ,  ( d )  B = 10. Sketches of the corresponding cross-section at x = 0 with 
barriers shaded are drawn to scale below the figure for easy visualization. 
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for global parameters is thus an order of magnitude greater than for the local velocity 
for the same values of A4 and N .  

4.2. Velocity j e l d  
Once the unknown coefficients A,,  in the general solution (15) are determined, the 
velocity of the fluid can be evaluated at any spatial point. As noted in the introduction 
we are particularly interested in investigating the flow characteristics of the orifice 
entrance profile for the junction strand barriers described in Tsay ei at. (1989) and 
Weinbaum et al. (1992). In the latter study the entrance profile for the flow past a 
periodic barrier was assumed to be that of a Poiseuille flow in a 2B’ x 2d’ rectangular 
duct. The present results show that for B in the observed physiological range, 
0.1 < B < 0.5, this approximation is poor and will need to be corrected. 

The numerical solutions presented herein can be compared with asymptotic 
solutions for several limiting cases. One limiting case is B 4 1 and (D- 1)/B of O(1) or 
larger. For this case the flow is reasonably approximated by the Hele-Shaw potential 
flow solution given in $ 3 .  A second limiting case, B % 1, corresponds to Hasimoto’s 
two-dimensional solution (1959) describing the flow through periodic slits in an infinite 
plane. The third limit, D- 1 + 1, represents obstacles that are widely separated. This 
solution should be similar to Lee & Fung’s (1969) solution for the flow past a single 
cylindrical post confined in a channel. By comparing our more general solution with 
these asymptotic solutions at the corresponding limits, the new solution can be verified 
while at the same time the practical limits of validity for these asymptotic solutions 
established. 

Figures 3 (a)  and 3 (b) demonstrate the corresponding velocity profiles in the plane 
of the orifice for Stokes flow and Hele-Shaw flow for B = 0.02 and B = 0.1 for D = 2 
in the midplane, z = 0. One observes that the velocity profiles for Stokes flow agree 
closely with the Hele-Shaw profiles, especially for B = 0.02, except for a narrow region 
of O(B’) near the edge of the barrier. In this narrow region the Stokes solution reaches 
a maximum and then decreases rapidly to zero, while the Hele-Shaw solution tends to 
infinity. These figures reveal that the Hele-Shaw potential flow solution is a reasonable 
approximation for B < 0.1. The maximum in the orifice entrance profile near y = 1 
disappears entirely at B - 0.5, result not shown. 

Figure 3(d)  compares the entrance velocity profiles in the orifice plane of the 
numerical solution, Hasimoto’s solution and Poiseuille flow in a rectangular duct for 
B = 10 and D = 2 in the midplane, z = 0. We can see that the numerical solution 
closely agrees with Hasimoto’s solution at this limiting case as expected, while the 
Poiseuille solution for z = 0 closely approximates a parabola. The difference between 
the profiles is qualitatively similar to the difference between Sampson’s profile for a 
circular orifice and fully established Poiseuille flow in a circular tube in which the 
Sampson profile is much blunter. In Dagan, Pfeffer & Weinbaum (1982) it is shown 
that for a finite-length circular pore whose length is greater than one diameter the 
entrance profile is closely approximated by the average of the two profiles. This 
suggests that for a barrier of finite thickness a profile that is the average of Hasimoto’s 
solution and the rectangular pore profile may be a good approximation provided the 
barrier thickness is greater than d‘. 

Figure 3 (c) compares the velocity profiles at the orifice for the numerical solution, 
the Hele-Shaw solution, Hasimoto’s solution and Poiseuille flow in a 2B’ x 2d’ infinite 
rectangular tube for the case B = 1 and D = 2 in the midplane, z = 0. We observe that 
neither Hele-Shaw nor Hasimoto’s solutions are satisfactory approximations. The 
Poiseuille duct flow velocity profile is the best of the three approximate profiles. 
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Figures 3(a-d) reveals the strong dependence of the entrance profile on the aspect 
ratio B’/d‘. For B/d’  4 1 the velocity has a minimum at the centreline, a maximum near 
the edge of the barrier and then decreases sharply to satisfy the no-slip boundary 
condition. The behaviour is analogous to a boundary layer in high-Reynolds-number 
flow except that here the mechanism is not inertia but a geometrical effect. This 
behaviour differs from the classical Stokes solutions of Sampson (1 89 1) and Hasimoto 
(1958) for the flow through zero-thickness orifices of circular or elliptic cross-section 
or periodic slits in an infinite plane wall where the maximum velocity is at the orifice 
centre. As the aspect ratio increases, the peak edge velocity decreases and the minimum 
velocity at the centre of the orifice increases. For B/d‘ of O( 1) or greater, the maximum 
velocity occurs at the centreline. For B/d’ of O( 1) the profiles are similar to the classical 
solutions for rectangular duct flow. The new solution clearly shows the transition in 
behaviour from the Hele-Shaw potential flow limit to Hasimoto’s two-dimensional 
limiting behaviour as B increases from 1 + B to B + 1. 

Figure 4 (a-d) illustrates the solutions for D = 1.1, barrier width small compared to 
slit width. In the limit D-t  1 this represents the flow past a single barrier. These 
solutions exhibit the same qualitative behaviour as B increases as the solutions for the 
flow past a single cylindrical post confined between two plates. The latter profiles are 
shown in figure 2 of Lee & Fung (1969). 

In figures 5(a)  and 5(b), the complete velocity field in the midplane z = 0 for two 
different limiting cases, B = 0.05 and B = 10, for D = 2 are plotted. It is interesting to 
observe the substantial differences in the flow fields between these two cases, especially 
near the edge of the barrier, although the barrier geometry is identical in a top-view. 

4.3. The friction coeficient 
In figure 6, the friction coefficientf, for the Stokes flow and Hele-Shaw potential flow 
solutions are plotted against the parameter B/ (D - 1) representing the distance 
between two plates non-dimensionalized by the barrier width for values of D of 1.01, 
1.1, 2, and 5. Also shown is the drag coefficient from Lee & Fung (1 969) for the flow 
past a circular cylindrical post confined between two plates. As expected, the solutions 
for the Stokes flow (solid lines) asymptotically approach the solutions for Hele-Shaw 
potential flow (dashed lines) for B 4 1 at different D. Furthermore, figure 6 provides 
numerical criteria based on the parameters B / ( D  - 1) and D as to when the Hele-Shaw 
potential flow approximation will be valid. f, decreases nearly linearly with B/ (D - 1) 
for B/ (D-  1) 4 1 and then asymptotically approaches a constant that depends on D 
as B/ (D - 1) increases. As anticipated, the smaller the barrier, the smaller the drag is. 
When D is very close to 1, and the barrier width is small compared with the width of 
the opening, one expects the solution to asymptotically approach that past a single 
obstacle. In this limit one anticipates that the drag should be nearly the same for 
obstacles of different cross-section but with the same frontal area, as observed, for 
example, for the flow past a sphere and a disk. This prediction is confirmed by figure 
6, which shows the close agreement between the curve at D = 1.1 (or D = 1.01) and the 
curve for a single cylinder of radius equal to the half-width of the barrier between the 
parallel plates given in Lee & Fung (1969). 

5. Biological application 
The solutions presented in this study have been very useful in formulating a more 

realistic model for the flow through the junction strand in the intercellular clefts of 
capillary endothelium. The recent study of the junction strand structure in frog 
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FIGURE 4. Velocity profiles at the orifice opening, x = 0, in the midplane, z = 0, for D = 1.1 : (a)  
B = 0.02, (b) B = 0.1, (c) B = 1, (d )  B = 10. Sketches of the corresponding cross-section at x = 0 
with barriers shaded are drawn to scale below the figure for easy visualization. 8-2 
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FIGURE 5. Velocity field in the midplane, z = 0, with the geometry of the cross-section shown 
below with barriers shaded for D = 2: (a) B = 0.05, (6) B = 10. 

mesentery, Adamson & Michel (1993), has provided average values for the key 
geometric parameters in the model. For this tissue B’ = 20 nm, d‘ = 150 nm and 
D’ = 2640 nm. Thus the average aspect of the orifice opening B = 0.133 and the 
dimensionless spacing between orifices D = 17. Comparison of the velocity profiles for 
B = 0.1 and D = 2 and 5 (latter not shown) reveals that the profiles are insensitive to 
D for D > 2 and thus the solution in figure 3 (b) is representative of the orifice entrance 
profile at the junction strand discontinuity for frog mesentery. In an earlier study 
(Weinbaum et al. 1992), a Poiseuille flow solution for flow in a long rectangular duct 
with the same cross-sectional aspect ratio B was used to estimate the entrance profile 
fore and aft of the junction strand. It is clear from the profiles in figure 3 that the Hele- 
Shaw profile is a more suitable representation. Similarly, the results for the drag 
coefficient in figure 6 reveal that the additional drag due to the junction strand can be 
well approximated by a simple Hele-Shaw flow since for the above geometric 
parameters B/ (D-  1) = 0.004. This simplified Hele-Shaw analysis is used in both the 
Appendix by Parker et al. to Adamson & Michel (1993), where a simple model is 
proposed for the flow through an isolated orifice in a junction strand, and the most 
recent study by Fu, Tsay & Weinbaum (1994), in which a more complete three- 
dimensional model for the flow through an intercellular cleft is developed which 
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FIGURE 6. The drag coefficientf, is plotted against B / ( D - I )  for D = 1.01, 1.1, 2, 5.  The solid line 
indicates the numerical solution for Stokes flow, equation (21). The dashed line represents the Hele- 
Shaw potential flow solution, equation (32). The short-long dashed line corresponds to the solution 
for flow past a single cylinder confined in a channel, Lee & Fung (1969). 

includes a finite region at the entrance to the cleft with cross-bridging fibre matrix 
components as well as a junction strand with orifice-like breaks. The matrix in the 
latter model provides the molecular filter and determines the reflection coefficient for 
different-size solutes. 

At present there are no definitive measurements for the geometric parameters in 
other tissues. It is generally accepted that 2B’ is approximately 20 nm for capillary 
clefts in most tissue. However, the measured filtration coefficient for mammalian 
muscle tissue is typically at least five times lower than frog mensentery. It is not clear 
whether this reduced filtration coefficient is because the break width 2d‘ is significantly 
smaller or the spacing between breaks, 2D’, is much larger than in frog mesentery. The 
appropriate orifice entrance profile should lie somewhere between the representative 
results shown in figures 3 (b) and 3 (c). 

6. Concluding comments 
The truncated series solution developed in this paper converges rapidly for all B 

provided D < 5.  Solutions for D > 5 are probably more efficiently obtained by 
considering the flow through a single isolated orifice although the shape of the velocity 
profiles would not differ significantly from those shown in figure 3 for D = 2 at the 
same value of B. Comparison with the Hele-Shaw potential flow solution for the 
limiting case B 4 1 shows that the latter approximation provides good accuracy for 
B < 0.1. In contrast to the classical orifice solutions of Sampson and Hasimoto, the 
maximum velocity need not occur on the centreline. There is a transition from the 
Hele-Shaw potential flow ( B  4 1) to the viscous two-dimensional flow ( B  $ 1) 
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behaviour as the aspect ratio of the orifice is increased. Numerical results indicate that 
the resistance coefficientf, decreases rapidly and then gradually levels off to a constant 
as the parameter B/ (D-  1) increases. The transition and value of the constant are a 
function of D. The solutions for the biological application which motivated this study, 
the flow through the junction strand barrier in vascular interendothelial clefts, can be 
reasonably approximated by the Hele-Shaw solution for frog mesentery, but may 
require the full solution for junction strand breaks in other tissues. 
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